
Constraints
DOI 10.1007/s10601-015-9183-0

Fast, Flexible MUS Enumeration

Mark H. Liffiton · Alessandro Previti ·
Ammar Malik · Joao Marques-Silva

March 22, 2015

Abstract The problem of enumerating minimal unsatisfiable subsets (MUSes) of
an infeasible constraint system is challenging due first to the complexity of comput-
ing even a single MUS and second to the potentially intractable number of MUSes
an instance may contain. In the face of the latter issue, when complete enumera-
tion is not feasible, a partial enumeration of MUSes can be valuable, ideally with
a time cost for each MUS output no greater than that needed to extract a single
MUS. Recently, two papers independently presented a new MUS enumeration al-
gorithm well suited to partial MUS enumeration [21,28]. The algorithm exhibits
good anytime performance, steadily producing MUSes throughout its execution; it
is constraint agnostic, applying equally well to any type of constraint system; and
its flexible structure allows it to incorporate advances in single MUS extraction
algorithms and eases the creation of further improvements and modifications. This
paper unifies and expands upon the earlier work, presenting a detailed explanation
of the algorithm’s operation in a framework that also enables clearer comparisons
to previous approaches, and we present a new optimization of the algorithm as
well. Expanded experimental results illustrate the algorithm’s improvement over
past approaches and newly explore some of its variants.

Keywords Minimal unsatisfiable subsets · Minimal correction sets · MUS
enumeration · Infeasibility analysis

Mark H. Liffiton
Illinois Wesleyan University, Bloomington, IL, USA
E-mail: mliffito@iwu.edu

Alessandro Previti
Complex and Adaptive Systems Laboratory, University College Dublin, Ireland
E-mail: alessandro.previti@ucdconnect.ie

Ammar Malik
Illinois Wesleyan University, Bloomington, IL, USA
E-mail: amalik@iwu.edu

Joao Marques-Silva
INESC-ID, IST, Univ. Lisboa, Portugal, and
Complex and Adaptive Systems Laboratory, University College Dublin, Ireland
E-mail: jpms@tecnico.ulisboa.pt

2 Liffiton, Previti, Malik, and Marques-Silva

1 Introduction

Within constraint processing, research into algorithms that analyze unsatisfiable
instances, or infeasibility analysis, can be split into two areas: algorithms that ex-
tract a single result or characteristic from an instance, such as a minimal unsatis-
fiable subset or maximal satisfiable subset, and those that enumerate multiple or
all answers of a given type. Problems of complete enumeration in the latter group
are intractable in the general case due to their potentially exponential number
of results, but applications can still derive benefit from multiple results produced
within some time or memory limit even when the complete set of results is impos-
sibly large. For example, counterexample-guided abstraction refinement (CEGAR)
model-checking systems can benefit from the enumeration of minimal unsatisfiable
subsets (MUSes). In CEGAR flows, an infeasible constraint system arises when
a spurious result is found due to the abstraction’s overapproximation, and each
MUS of that system provides a refinement of the abstraction that eliminates a dif-
ferent class of spurious results. By enumerating those MUSes and making multiple
refinements within a single iteration, a CEGAR flow can reduce both the number
of iterations required to converge and the runtime compared to computing a single
refinement per iteration [1].

Compared to work on computing a single result for an infeasible instance,
there are few published approaches to enumerating all or multiple MUSes. Previous
approaches, discussed in Section 4, exhibit poor scaling even when the goal is partial

enumeration, producing some MUSes when the complete set is intractably large.
Furthermore, most existing enumeration algorithms were published before recent
advances in extracting a single MUS and thus do not make use of the new tools
or ideas therein. A reasonable goal for MUS enumeration would be to produce the
first MUS output in time similar to that of a state-of-the-art single-MUS algorithm,
followed by a roughly equivalent delay between each later MUS produced, but no
existing work achieved this. Two recent papers independently presented a new
approach to MUS enumeration; the MARCO algorithm by Liffiton and Malik [21]
and eMUS by Previti and Marques-Silva [28] both met this goal. These algorithms,
nearly identical in implementation, both have the following qualities:

– They are constraint agnostic, meaning they apply equally well to any type of
constraint system and have no dependencies on any particular constraint fea-
ture.

– They can directly employ any state-of-the-art MUS extraction algorithm, im-
mediately benefiting from current and future advances in that area.

– They are effective anytime algorithms, producing MUSes “early and often” and
generally at a steady rate.

This paper seeks, first, to present the MARCO/eMUS algorithm in a unified,
comprehensive manner. Here, we use the name MARCO1 throughout to refer to
the algorithm. We use a framework for both describing and visualizing infeasibil-
ity analysis algorithms in terms of their operation within the power set lattice for
an infeasible constraint system. Within this framework, we expand the survey of
previous work, provide a more complete description and analysis of the MARCO

1 From “Mapping Regions of Constraints,” which describes a major aspect of the algo-
rithm’s operation.

Fast, Flexible MUS Enumeration 3

algorithm, and relate the new and old algorithms more directly than earlier pub-
lications. Furthermore, we present improvements to the MARCO algorithm and its
implementation and an expanded empirical analysis of MARCO, its variants, and
past approaches. For source code, detailed experimental data, etc., please refer to
the project’s website: http://www.iwu.edu/~mliffito/marco/.

In the following, we first define terms and describe concepts underlying this
work (Section 2) and then describe the power set lattice framework for under-
standing, analyzing, and comparing infeasibility analysis algorithms (Section 3).
We use this framework to discuss past work on MUS enumeration (Section 4),
followed by the presentation of the MARCO algorithm (Section 5), first in a basic
form, then with optimizations and other variations. We provide comparisons both
with previous work and amongst MARCO’s variants with an extensive empirical
analysis (Section 6), then conclude and describe some avenues for future work
(Section 7).

2 Preliminaries

To begin, we will briefly define the terms and concepts used in this paper. The
problem of interest in this work is one of analyzing infeasible constraint systems.
We’re interested in constraint agnostic approaches, for which the specific type of
constraint is unimportant, hence we will consider a constraint system C as an
ordered set of n abstract constraints {C1, C2, . . . , Cn} over some set of variables.
Each constraint Ci restricts the “allowed” assignments to those variables in some
way. The main requirement is that we must have some method of determining,
for any subset S ⊆ C, whether S is satisfiable (SAT), meaning there exists an
assignment that is allowed by all Ci ∈ S, or unsatisfiable (UNSAT), meaning no
such assignment exists.

Boolean Satisfiability (also referred to as SAT2) is a simple type of constraint
problem that some algorithms use as an auxiliary reasoning device in this work, and
it can provide concrete examples of constraint systems throughout. Such constraint
systems are presented as Boolean logic formulas in conjunctive normal form (CNF),
where C is a conjunction of constraints known as clauses C =

∧
i=1..n Ci; each Ci

is a disjunction of literals Ci = li1 ∨ li2 ∨ · · · ∨ liki
; and each literal lij is either a

Boolean variable x or its negation ¬x. A CNF formula is satisfiable iff there exists
an assignment of truth values to its variables such that the formula evaluates to
True. The following formula serves as a running example throughout this paper.
The clauses are numbered, and they will be referred to by number for brevity.

C = {1 : (a), 2 : (¬a), 3 : (¬a ∨ b), 4 : (¬b)}

This example formula is unsatisfiable; this is easily seen by noting that no assign-
ment to a can satisfy constraints 1 and 2 simultaneously.

Some useful analyses of unsatisfiable constraint systems consist in identifying
subsets of those systems with particular properties:

– A minimal unsatisfiable subset (MUS) M of a constraint system C is a subset
M ⊆ C such that M is unsatisfiable and ∀c ∈M : M \{c} is satisfiable. An MUS
can be seen as a minimal explanation of the constraint system’s infeasibility.

2 The intended meaning of SAT, either the adjective or the type of constraint system, will
be clear in context.

http://www.iwu.edu/~mliffito/marco/

4 Liffiton, Previti, Malik, and Marques-Silva

– A maximal satisfiable subset (MSS) M of a constraint system C is a subset
M ⊆ C such that M is satisfiable and ∀c ∈ C \M : M ∪{c} is unsatisfiable. The
definition of an MSS is symmetric to that of an MUS, with “satisfiable” and
“unsatisfiable” swapped along with maximal for minimal.

– A minimal correction set (MCS) M of a constraint system C is a subset M ⊆ C

such that C \M is satisfiable and ∀S ⊂ M : C \ S is unsatisfiable. MCSes are
so named due to the fact that their removal from C can be seen to “correct”
the infeasibility.

It is important to distinguish between subset minimality and maximality as we’ve
used here and minimum or maximum cardinality subsets of each type. For exam-
ple, the Max-SAT problem is concerned with identifying a maximum cardinality
satisfiable subset of a CNF formula; this is necessarily an MSS, but there can be
MSSes of smaller cardinality as well.

MSSes and MCSes are complementary; any MSS of C is the complement,
relative to C, of some MCS and vice versa. They are two sides of the same coin,
providing two ways of encoding the same information, and we can thus use the
terms somewhat interchangeably. Minimal correction sets are typically more useful
in practice than maximal satisfiable subsets, as an MCS is often smaller than its
complementary MSS, and MCSes provide information more directly relevant to
the “conflict” in an infeasible constraint system. Throughout this work, we will
use whichever subset type is most relevant and makes the explanation clearest in
a given section. Our running example has two MUSes and three MSS/MCS pairs:

MUSes

{1, 2}
{1, 3, 4}

MSSes MCSes

{2, 3, 4} {1}
{1, 3} {2, 4}
{1, 4} {2, 3}

Finally, we will make use of a duality between MUSes and MCSes defined in
terms of hitting sets that many MUS enumeration algorithms have exploited in the
past. A hitting set of a collection of sets A is a set H such that every set in A is
“hit” by H; that is, H contains at least one element from every set in A. Further,
a minimal hitting set Hmin is a hitting set that is subset minimal; no element can
be removed from Hmin without removing its hitting set property and “missing”
some set in A. Section 3.2 discusses how every MUS of a constraint system is a
minimal hitting set of the system’s MCSes and every MCS is a minimal hitting
set of its MUSes, first noted by Reiter [29] and de Kleer and Williams [7]. This
duality can be verified in our running example above.

3 Power Set Exploration

MARCO and other algorithms in the domain of infeasibility analysis can be under-
stood and compared by viewing them as methodical explorations of power sets.
The goal of MUS/MSS enumeration algorithms given a set of constraints C can be
seen as the exploration of the power set of the constraints P(C). We can visualize
the power set as a lattice in a Hasse diagram as shown in Figure 1, in which each
level contains subsets of a certain size and edges link sets with their immediate
supersets and subsets. Furthermore, we will view the power set P(C) as a Boolean

Fast, Flexible MUS Enumeration 5

∅

1 2 3 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

Fig. 1 Hasse diagram of the
power set lattice for a generic set
of four constraints C = {1, 2, 3, 4}.

∅

1 2 3 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

Fig. 2 Hasse diagram / map of
our running example, where C =
{1 : (a), 2 : (¬a), 3 : (¬a ∨ b), 4 :
(¬b)}.

algebra and reason about it with Boolean functions in the form of propositional
formulas.

3.1 Maps

In exploring this power set, an algorithm will implicitly or explicitly be determining
the feasibility of various subsets of C. A map (in the mathematical sense) from
subsets to their feasibility,

f : X ⊆ C → {SAT,UNSAT}

then can be represented by a map (in the cartographic sense) made by coloring
each node in the power set lattice with a color representing its satisfiability. For our
running example from Section 2, the fully colored map of C is shown in Figure 2.
The UNSAT and SAT regions are marked, with the MUSes ({1, 2}, {1, 3, 4}) and
MSSes ({1, 3}, {1, 4}, {2, 3, 4}) circled in each. We can state a few simple facts about
infeasible constraint sets along with the interpretation of each in the context of
the Hasse diagram.

6 Liffiton, Previti, Malik, and Marques-Silva

– Every subset of P(C) is either SAT or UNSAT — In the diagrams, we will
color SAT nodes green and UNSAT nodes red3.

– If a given subset is SAT (UNSAT), then all of its subsets (supersets) are SAT
(UNSAT) as well — Given a green (red) node, all successors (predecessors)
will be the same color.

– From the definition of MSS and MUS, MSSes and MUSes are maximal green
or minimal red nodes within their respective regions of the same color — These
nodes will be outlined in the diagrams.

A fully colored power set lattice, with every subset marked as either SAT or
UNSAT, fully describes what we will call the feasibility of the constraint set C.
Many problems of infeasibility analysis, such as the Max-SAT problem, extracting
an UNSAT core, or enumerating all MUSes, can be seen as problems of filling
in some or all of the map with the correct colors either to identify a point with
certain characteristics (e.g. Max-SAT, UNSAT core) or to fully determine every
point in it (e.g. MUS/MSS enumeration).

3.2 Hitting Set Dualization

Complete enumeration can also be considered as a process of identifying the frontier

between the SAT and the UNSAT regions. The frontier can be fully specified
with either the set of “low” UNSAT points (the MUSes) or the set of “high”
SAT points (the MSSes), as these are duals of one another. In the domain of
model-based diagnosis, closely related to infeasibility analysis, Reiter [29] and de
Kleer and Williams [7] both noted this duality, and it has since proven useful
in infeasibility analysis. Diagnosis deals with analyzing a system, comprised of
multiple components, that has failed some test, producing observations that do
not match the expected outcomes for that system. For a given system, one can
find diagnoses, minimal subsets of the components whose failure could explain the
incorrect observations, and conflicts, minimal subsets of the components that, if
all operating correctly, could not have produced those observations. Mapped into
the domain of constraints, diagnoses are equivalent to minimal correction sets, and
conflicts are minimal unsatisfiable subsets; many characteristics of diagnoses and
conflicts apply to MCSes and MUSes as well.

The duality can be stated briefly: any MCS of an instance is a minimal hitting
set of the collection of MUSes for that instance, and any MUS is a minimal hitting
set of the MCSes (Theorem 4.4 and Corollary 4.5 in [29]). One ramification of this
is that the collection of all MUSes (“low” UNSAT points) is an implicit encoding of
the set of MCSes (complements of the “high” SAT points) and vice-versa; one can
translate from one to the other by enumerating minimal hitting sets of abstract
elements, i.e. constraint indexes, without dealing with the underlying constraints
at all. Many infeasibility analysis algorithms have exploited this duality, either
explicitly or implicitly computing minimal hitting sets, since Reiter’s work [29];
we describe existing MUS enumeration algorithms that do so in Section 4.3.

3 For the color blind and those reading black and white copies, the SAT and UNSAT regions
can be differentiated by the edges between SAT and UNSAT nodes, which are lighter gray than
the others. Then, the region that includes the bottom ∅ node is SAT and the other is UNSAT.

Fast, Flexible MUS Enumeration 7

3.3 Exploring Infeasibility

Considering the problem of enumerating MUSes and MSSes as one of exploring
and mapping the infeasibility of a constraint set can provide helpful insight into
the operation of many algorithms. First, we will clarify that in the course of any
such exploration of a constraint set C, there are in fact two functions of interest:

1. The constraint set’s “ground truth,” G, which describes the feasibility (SAT
or UNSAT) of every subset of C:

G : P(C)→ {False (UNSAT),True (SAT)}

This is not initially known, but it is implicit in the constraints of the instance.
Figure 2 is thus a representation of G for the running example.

2. A map of what has been explored, Map, which maps from subsets of C to
whether or not their feasibility has yet been determined. Here, we will use the
interpretation that Map(X ⊆ C) is True if X is unexplored and its feasibility
is undetermined and False otherwise:

Map : P(C)→ {False (explored),True (unexplored)}

A given algorithm seeks to determine the function G, either in whole or in part,
while Map keeps track of which parts of G have been determined.

We can then formally define the unexplored subset problem for a constraint set
C, a set of known-unsatisfiable subsets U , and a set of known-satisfiable subsets
S as follows:

– We define a dominance relation over subsets in U and S that indicates “ex-
plored” points. A subset X ⊆ C is dominated by a subset Y ∈ U ⇐⇒ X ⊇ Y ,
and a subset X ⊆ C is dominated by a subset Z ∈ S ⇐⇒ X ⊆ Z. In other
words, a subset is dominated by an element of U or S iff that subset’s feasibility
is known and thus it is “explored.”

– The solution to the unexplored subset problem is a subset X ⊆ C such that X

is not dominated by any element of U or S if such a subset X exists or NULL
otherwise.

Note that subsets in U and S need not be minimal or maximal, respectively, and
that U and S can both be empty.

The unexplored subset problem is equivalent to finding a subset X for which
Map(X) = True. Note that any function f : P(C) → {False,True} can be rep-
resented by a propositional formula over |C| variables. The unexplored subset
problem can be solved by formulating Map as a Boolean CNF formula map as
follows:

– Every constraint Ci ∈ C is assigned a Boolean variable xi.
– Any complete assignment indicates a subset X ⊆ C by the variables assigned

True:
xi = True ⇐⇒ Ci ∈ X

– For every known-unsatisfiable constraint set Y ∈ U , map contains a clause:∨
i:Ci∈Y

¬xi

This marks every superset of Y as explored; their infeasibility is known as they
all must be unsatisfiable.

8 Liffiton, Previti, Malik, and Marques-Silva

– Similarly, for every known-satisfiable constraint set Z ∈ S, map contains a clause
using the complement of Z with respect to C:

∨
i:Ci /∈Z

xi

This marks every subset of Z as explored, as all such subsets are known to be
satisfiable.

Lemma 1 (Correctness). Given the above formulation of map for the unexplored subset

problem for a constraint set C, every model of map indicates a subset of C that is not

dominated by any subset in U or S (i.e., it is unexplored).

Proof by contradiction in cases. We prove separately that it can not be dominated
by a subset in U nor by a subset in S.

Case 1: Assume there exists some model of map such that the indicated subset
is dominated by a known-unsatisfiable subset Y ∈ U . Thus, ∀Ci ∈ Y , xi is assigned
True. However, map contains a clause

∨
Ci∈Y ¬xi. The model violates this clause,

and it follows that the assumption must be false, proving Case 1 impossible.

Case 2: Assume there exists some model of map such that the indicated subset
is dominated by a known-satisfiable subset Z ∈ S. Thus, ∀Ci /∈ Z, xi is assigned
False. However, map contains a clause

∨
Ci /∈Z xi. The model violates this clause,

and it follows that the assumption must be false, proving Case 2 impossible.

Case 1 and Case 2 together prove that no model of map indicates a subset of C
that is dominated by any constraint set in U nor by any in S, and thus the lemma
holds.

Lemma 2 (Completeness). Given the above formulation of map for the unexplored

subset problem for a constraint set C, map is unsatisfiable if and only if U contains all

MUSes of C and S contains all MSSes of C (and thus every subset of C is explored).

Proof. The formula map is unsatisfiable iff every complete assignment falsifies at
least one clause in map. Additionally, every clause in map is falsified by only the
assignments that indicate a subset of C dominated by the constraint set from
which that clause was generated. Therefore, every complete assignment falsifies at
least one clause in map iff every subset of C is dominated by some unsatisfiable
subset in U or some satisfiable subset in S. Every subset of C is dominated by
some set in U or some set in S iff U contains all MUSes of C and S contains all
MSSes of C. By the transitive property of iff, the lemma holds.

Theorem 1. The above formulation of map provides a complete, correct solution for

the unexplored subset problem.

Proof. By Lemmas 1 and 2.

Fast, Flexible MUS Enumeration 9

3.4 Implementation

The unexplored subset problem can form the basis of algorithms for exploring the
infeasibility of a constraint set. In any algorithm that explores P(C), the power
set is initially unexplored, hence map = >. Any time a region of P(C) is explored
and its feasibility is determined, it can be marked as such by adding one or more
clauses to map to block or remove the corresponding models. For example, an
algorithm could check the satisfiability of C itself and determine it to be UNSAT.
Then, it could block the model of map corresponding to C, [x1 = x2 = x3 = x4 =
True] (i.e., all constraints of C are included), by adding a single clause to map:
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4). The map formula would then represent the fact that C is
explored and all proper subsets of C remain unexplored.

With the view of C in terms of its power set lattice, the two functions G and
Map, and the formulation of the unexplored subset problem into the Boolean CNF
formula map, we can describe useful “actions” that can be taken in the context of
exploring a power set. They are presented here as subroutines that we will use in
later algorithm pseudocode. Note that these are all constraint-agnostic, and they
can be implemented on top of existing solvers for any constraint type.

– GetUnexplored(map)→ subset X

Assuming map is satisfiable (indicating there is at least one subset still unex-
plored), we can obtain an unexplored subset of C by getting a model of map

using a Boolean satisfiability solver.
– SAT(subset X)→ {T,F}

We can check whether any subset X ⊆ C is feasible simply by sending it to a
constraint solver. This determines one point in G, the underlying ground truth
of the feasibility of C.

– Shrink(unsatisfiable subset X)→MUS M

Given a known-unsatisfiable subset X, we can extract an MUS M ⊆ X via any
single-MUS extraction algorithm. One of the simplest such algorithms involves
a series of SAT calls to explore proper subsets of X, descending through the
lattice on any UNSAT subsets found until one is reached whose children are
all SAT.

– Grow(satisfiable subset X)→MSS M

As the dual of Shrink, we can find an MSS with any known-satisfiable subset
X as a starting point. A method that “walks” up through the lattice by identi-
fying SAT supersets can be employed here. Note that this is not equivalent to
solving the Max-SAT problem, as an MSS need not have the largest possible
cardinality.

– BlockUp(unsatisfiable subset X)→ clause B

We can mark a region of the lattice as explored by adding a new clause to map

following the formulation above:

B =
∨

i:Ci∈X

¬xi

– BlockDown(satisfiable subset X)→ clause B

Likewise, a satisfiable subset and all of its subsets can be marked as explored
with a similar clause:

B =
∨

i:Ci /∈X

xi

10 Liffiton, Previti, Malik, and Marques-Silva

3.5 Power Set Exploration in Other Work

These ideas are present in a range of infeasibility analysis algorithms—sometimes
explicitly acknowledged in similar terms, though often just implicit in the oper-
ation of an algorithm—including both MUS enumeration algorithms as detailed
in Section 4 and the optimization problems Max-SAT and Max-SMT (Max-SMT
is Max-SAT raised to the more general constraint types in SAT Modulo Theo-
ries, or SMT). For example, some “core-guided” Max-SAT algorithms [27] operate
by finding unsatisfiable cores, removing their supersets from a search space with
blocking clauses like BlockUp, and implicitly searching for the smallest hitting
set of the cores found thus far using a constraint solver. In other words, they find
the highest unexplored point under a known-UNSAT region; if that point is found
to be UNSAT, a core is extracted from it, the known-UNSAT region is expanded,
and the process repeats.

Davies and Bacchus more directly exploit the hitting set duality to solve Max-
SAT [6] while Cimatti, et al. follow a similar approach for Max-SMT [5]. Addition-
ally, both explore and “map” the power set of a set of constraints with a secondary
abstraction like the map formula discussed above. With the use of these techniques,
both of these approaches are strongly related to the MARCO algorithm, despite
solving a much different problem. By considering an infeasibility analysis algo-
rithm in terms of its exploration of a power set, these connections become clearer.
We describe previous MUS enumeration work in similar terms to aid comparison
and draw further connections.

4 Enumerating MUSes: Past Approaches

The existing work on enumerating MUSes of infeasible constraint systems is some-
what sparse, especially in relation to the amount of research done on extracting
single MUSes and non-minimal UNSAT cores. We separate the work into algo-
rithms that are tightly coupled to specific constraint types and those that are
more generalizable and constraint-agnostic, and we focus on the latter as most
relevant to this paper.

4.1 Specific Constraint Types

Several MUS enumeration algorithms have been presented whose operation relies
on features of a particular type of constraint. In operations research (OR), for
example, and particularly for linear programs (LP) and integer linear programs
(ILP), MUSes are known as Irreducible Inconsistent Subsystems (IISes). The OR
literature contains several methods for computing all IISes of an LP, such as the
original work by van Loon [31], later work by Gleeson and Ryan [13], etc. However,
these approaches are specific to linear programming, relying on techniques like
constructing polytopes and the simplex method, and they do not generalize well.

In the constraint programming domain, Gasca, et al. developed methods for
computing all MUSes of overconstrained numerical CSPs (NCSPs) [12]. NCSPs
consist of numeric variables defined over the reals and constraints in the form of

Fast, Flexible MUS Enumeration 11

inequalities or equalities between linear or polynomial combinations of the vari-
ables. Their approach explores all subsets of a constraint system while pruning
unnecessary collections of subsets with rules based on structure specific to NCSPs
that also do not generalize.

4.2 Constraint-Agnostic: Subset Enumeration

In the space of constraint-agnostic algorithms for enumerating MUSes, a few dif-
ferent classes of algorithms have been presented. As with the work in this paper,
all of the following algorithms are easily applied to any type of constraint system,
from CSP to IP to SAT, and none rely on specific features of any constraint type
or solving method.

Early constraint-agnostic algorithms relied on explicit subset enumeration, ex-
ploring the power set element-by-element. This technique was first explored in the
field of diagnosis by Hou [17], who presented a technique for enumerating subsets
in a tree structure along with pruning rules to reduce its size and avoid unnec-
essary work. Starting from the complete constraint set C, the algorithm searches
the power set P(C), branching to explore all subsets. Each subset is checked for
satisfiability, and any subset found to be unsatisfiable and whose children (proper
subsets) are all satisfiable is an MUS. This can be visualized as depth-first search
through the power set lattice (as in Figure 1), calling SAT on each node, back-
tracking when a satisfiable subset is reached, and noting which unsatisfiable nodes
are “low points” and thus MUSes. Han and Lee corrected an error in one of the
pruning rules and presented additional improvements to the technique [16], and
further optimizations and enhancements were made by Garćıa de la Banda, et al.
[11].

In work primarily focused on extracting “preferred explanations” (MUSes w.r.t.
preferences on constraints), Junker briefly describes a method for enumerating
MUSes that also enumerates subsets, though it is not presented in detail [18].
Junker’s algorithm operates by branching on each constraint Ci, in one direc-
tion removing Ci and recursively enumerating MUSes if the remaining subsystem
is unsatisfiable, and in the other direction removing other constraints and find-
ing MUSes that contain Ci by an unspecified mechanism. Effectively, this walks
through the power set subset-by-subset as well. The primary drawback of the gen-
eral subset enumeration approach is the large number of SAT calls required as
the infeasible region of the power set and its frontier is mapped subset-by-subset.
Later approaches provide better efficiency and scaling by reducing the number of
subsets that are checked explicitly.

4.3 Constraint-Agnostic: Hitting Set Dualization

CAMUS The CAMUS algorithm presented by Liffiton and Sakallah [22,23] uses the
hitting set MUS/MCS duality discussed in Section 3.2 to produce MUSes by first
computing all MCSes of an instance, then computing minimal hitting sets of them;
as noted, each such hitting set is an MUS. It computes MCSes with what can be
considered a “top-down” search through the power set, searching a level (subsets

12 Liffiton, Previti, Malik, and Marques-Silva

∅

1 2 3 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4 Bound=1,	no	MCSes	found.

Bound=2,	finds	MCS	{1},	blocks	down.

Bound=3,	finds	MCSes	{2,4}	and	{2,3},
blocks	down.

All	subsets	blocked,	C'	has	no	models,
first	phase	terminates.

Fig. 3: Illustrating the first phase of CAMUS on the running example. Each iteration
explores a lower level of the power set.

of a particular size) for satisfiable subsets that are not subsumed by some larger
satisfiable subset found in a higher level.

Specifically, every constraint Ci is augmented with a selector variable yi to
become C′

i = ¬yi ∨ Ci such that an assignment of True to yi “enables” Ci and
False “disables” it. Any satisfiable model of the augmented system C′ =

∧
C′
i thus

indicates a satisfiable subset of C by the yi variables assigned True in that model;
conversely, the corresponding correction set is indicated by the yi variables assigned
False. Cardinality constraints with bounds on the number of yi variables assigned
False restrict the search to a particular level or size of MCS, and using a linear
progression of bounds, CAMUS searches for MCSes of increasing size / MSSes
of decreasing size. Subsets of any MSS found are blocked with a BlockDown

clause before continuing the search. A variant of CAMUS described in [23] uses an
equivalent of the Grow subroutine to compute MSSes (and thus MCSes) more
efficiently in some cases than the strict linear search, but its performance has not
been studied in depth.

Figure 3 illustrates the execution of the first phase of CAMUS on our running
example. The SAT and UNSAT regions are not known but are implicitly present
in the augmented formulation of C′, whose models correspond to the satisfiable
subsets of C. Therefore, the UNSAT region is implicitly “marked” as explored
in C′. Then, with each bound k, any model found indicates an MCS of size k,
whose corresponding MSS is blocked down to mark it and its subsets as explored.
The combination of the implicitly unsatisfiable region with the explicitly blocked
subsets of MSSes eventually covers the entire power set, making C′ unsatisfiable,
and the first phase terminates. The result of this enumeration is the complete set
of MCSes, and a minimal hitting set enumeration algorithm (equivalent to the
hypergraph transversal problem) is applied to produce MUSes.

Note that the search for MCSes in CAMUS operates on the constraints directly,
but it can be implemented in any domain that allows augmenting constraints
with selector variables or otherwise efficiently searching for satisfiable subsets.
The second phase, computing minimal hitting sets, operates on sets of abstract
elements (constraints can be represented by integers, e.g.) and thus is independent
of the implementation and constraint solver used in the first phase. Overall, the
approach is constraint-agnostic with only modest requirements on the constraint
solver used.

Fast, Flexible MUS Enumeration 13

Beyond the basic CAMUS algorithm, Grégoire, et al. boosted the search for
MCSes using an incomplete local search oracle to identify candidate MCSes [14],
which is more efficient than the complete MCS enumeration but still relies on it
for completeness and correctness. Another optimization using unsatisfiable cores
to boost the search for MCSes improved the algorithm’s performance substantially
[24] with no major drawbacks.

A significant shortcoming of CAMUS, in all of these variants, is that the first
phase can be intractable. A constraint system may have an exponential number of
MCSes, all of which must be enumerated in the first phase of the algorithm before
any MUSes are produced. To combat this intractability, another variant in [23]
introduces the concept of the partial correction set (PCS), a subset of some MCS.
The variant is a modification to the first phase of CAMUS that computes PCSes
by selectively removing constraints from the problem as it finds MCSes. This
reduces the number of results found in that phase and reduces the search space
as it progresses, completing more quickly overall. Several techniques for choosing
constraints to remove are described, and one simple method is to truncate each
MCS found to a set size k, removing an arbitrary set of constraints from each MCS
to reach that size. The minimal hitting sets of the PCSes found in this way are
still MUSes, and so the second phase is unaltered. Thus, using PCSes instead of
MCSes sacrifices completeness for speed in a controllable fashion.

DAA Another algorithm that exploits the hitting set duality between MCSes and
MUSes is Dualize and Advance (DAA) by Bailey and Stuckey [2], based on the
algorithm of the same name by Gunopulos, et al., for discovering patterns in data
mining [15]. DAA uses the Grow subroutine on known-satisfiable subsets of C

(initially the empty set) to produce MSSes and their complementary MCSes, then
computes minimal hitting sets (hypergraph transversals) of the MCSes found thus
far. Each hitting set is tested for satisfiability: unsatisfiable subsets are MUSes and
can be immediately output, while any satisfiable subset found is taken as the next
starting point for Grow to find another MSS/MCS. The computation of hitting
sets can be seen as an implementation of GetUnexplored in this context. The
MCSes implicitly encode the known-satisfiable region of the power set at any point
in time, and a minimal hitting set of the MCSes is a “low point” in the region
above that. Therefore, each hitting set is either a known MUS (easily filtered out),
a new unexplored MUS to be output, or a new unexplored SAT subset.

The following example illustrates the execution of DAA on our running example.
The diagrams show the known-satisfiable region implicitly encoded by the MCSes
at each iteration.

Example execution of DAA

C = {1 : (a), 2 : (¬a), 3 : (¬a ∨ b), 4 : (¬b)}

Initially, no MCSes have been found, so the first known-satisfiable subset is the
empty set. This is given to Grow to obtain an MSS, and its complementary MCS
is added to the set of MCSes from which hitting sets are computed.

14 Liffiton, Previti, Malik, and Marques-Silva

– Grow(∅)→ {1, 3} – MCS: {2, 4}
– MCSes = {{2, 4}}
– HittingSets(MCSes)→ {{2}, {4}}

Both of these hitting sets (minimal points in the
region above the known-SAT region) are satisfi-
able subsets, so one is taken as the next starting
point for Grow.

∅

1 2 3 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

– Grow({2})→ {2, 3, 4} – MCS: {1}
– MCSes = {{2, 4}, {1}}
– HittingSets(MCSes)→ {{1, 2}, {1, 4}}

The first of these hitting sets, {1, 2} is unsatisfi-
able, and it is output as an MUS. The other is
given to Grow for the next iteration.

∅

1 2 3 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

– Grow({1, 4})→ {1, 4} – MCS: {2, 3}
– MCSes = {{2, 4}, {1}, {2, 3}}
– HittingSets(MCSes)→ {{1, 2}, {1, 3, 4}}

∅

1 2 3 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

The first hitting set has been found already and is skipped, while the other, {1, 3, 4}
is found to be unsatisfiable and output as an MUS. With no satisfiable subsets
found in the hitting sets, the algorithm has found all MUSes, and it terminates.

While originally presented for systems of Herbrand constraints, the DAA algo-
rithm is constraint-agnostic. It relies on the Grow and SAT subroutines, which
are easily adapted to any constraint type, and it otherwise operates independently
of the constraints. Additionally, the authors note that the computation of minimal
hitting sets (hypergraph transversals) can be accomplished with any suitable algo-
rithm; they use an implementation of a simple algorithm by Berge [4] for testing,
though they and Gunopulos, et al. note that with the incremental algorithm pre-
sented by Fredman and Khachiyan [10] the runtime is worst-case subexponential
in the size of the output. In contrast with CAMUS, DAA outputs MUSes interleaved
with the MCSes it finds, meaning it can produce MUSes before all MCSes have
been found, avoiding the intractability of the first phase of CAMUS. However, as
presented, it suffers from a different intractability in that the set of hitting sets
computed in each iteration can become exponentially large, exhausting memory
limits early in its execution.

PDDS An approach tightly related to DAA was later proposed in the diagnosis
domain by Stern, et al., who referred to it as Primal-Dual Diagnostic Search
(PDDS) [30]. If translated into the terminology of analyzing infeasible constraint
systems, PDDS is given as an algorithm for computing MCSes (subset-minimal
diagnoses in their terms) from MUSes (subset-minimal conflicts), but it is noted
that the algorithm can operate in either direction due to the symmetry of the
duality between the two types. Briefly, the algorithm repeatedly computes a new

Fast, Flexible MUS Enumeration 15

minimal hitting set of the MUSes found thus far, keeps it as a new MCS if its com-
plement is satisfiable, and minimizes it to another MUS otherwise. Alternatively,
the symmetry of the relationship between MUS and MCSes means that PDDS can
operate by computing hitting sets of MCSes, keeping unsatisfiable sets as MUSes,
and growing satisfiable sets to MSSes whose complements are kept as new MCSes.
In this direction, it is similar to DAA. The main differences are that PDDS is pre-
sented as taking an initial set of either MUSes or MCSes as input, though it is a
minor modification for this set to be empty as it is in DAA, and PDDS does not
necessarily compute all hitting sets of the MCSes at each iteration, avoiding the
memory scaling issues of DAA.

Stern, et al. also present the Switching Diagnostic Engine (SDE), an enumer-
ation algorithm which repeatedly applies one iteration of PDDS in alternating
directions. In terms of MCSes and MUSes, it first computes one hitting set of the
known MCSes to either produce an MUS or another satisfiable subset for Grow,
then it computes a hitting set of the known MUSes to produce either an MCS
or another unsatisfiable subset for Shrink, etc. The authors only present results
for SDE, and it is not clear how its performance compares to running PDDS in a
single direction (as in DAA). The difference is primarily in the order in which each
algorithm will explore the power set, and it isn’t clear that the interleaved order
of SDE is superior to using PDDS in a single direction.

5 Enumerating MUSes: The MARCO Algorithm

The MARCO algorithm enumerates MUSes (and, as a necessary side-effect, MSSes)
by means of the hitting set dualization discussed in Section 3 and employed in
various ways by the algorithms presented in Section 4.3. We first describe a basic
version of the MARCO algorithm to illustrate the underlying concepts, and we then
present an optimized version geared toward enumerating MUSes.

Recall that this algorithm enumerates both the MUSes and the MSSes of a
constraint set C. In the general case, this complete enumeration is intractable,
as a constraint set with n constraints may have a number of MUSes and MSSes
exponential in n. Sperner’s Theorem provides a loose upper bound on the number
of either as (n

bn/2c) (intuitively, this is the number of elements in the “widest” row

of the Hasse diagram for the power set lattice), and many real-world benchmarks
exhibit exponentially many MUSes and/or MSSes.

In the face of this intractability, the MARCO algorithm has the desirable prop-
erty of yielding results both “quickly” and “early,” compared to other enumeration
approaches. Section 6 presents empirical data to support those claims, and we jus-
tify them in the discussion of the algorithm here. Notably, we show that the first
MUS output by the MARCO algorithm is produced with a delay equivalent to that
of the best-known single-MUS extraction algorithm (in fact, our algorithm can
directly employ whatever implementation is currently state-of-the-art), and each
successive result can be returned with a similar delay, potentially even faster. Fol-
lowing the basic version of the algorithm, we will present a variety of optimizations
that improve the performance of MARCO at the task of enumerating MUSes. The
dual nature of MUSes and MSSes is reflected in the fact that these optimizations
often have clear duals that instead optimize performance for enumerating MSSes,
but these are not the focus of this work and are only mentioned briefly here.

16 Liffiton, Previti, Malik, and Marques-Silva

5.1 Basic MARCO Algorithm

The basic version of the algorithm is presented as pseudocode in Algorithm 1
written using the subroutines presented in Section 3. Fundamentally, the MARCO

algorithm operates by repeatedly:

1. Selecting an unexplored point in the power set lattice, a subset of C that we
call a seed,

2. Checking the satisfiability of the seed,
3. Growing or shrinking it to an MSS or an MUS as appropriate, and
4. Marking a corresponding region of the lattice as explored.

Each iteration identifies one new MUS or MSS, and the process terminates when
all subsets have been explored (characterized as SAT or UNSAT) and all MUSes
and MSSes have been found.

Algorithm 1 The most basic version of the MARCO algorithm
input: Unsatisfiable constraint set C
output: MUSes and MSSes of C

// The “map” is initially an empty formula with |C| Boolean variables
1. map ← BoolFormula(nvars = |C|)
2. while map is satisfiable:
3. seed← GetUnexplored(map)
4. if SAT(seed):
5. MSS← Grow(seed)
6. output MSS

// Block all subsets of MSS
7. map← map ∧BlockDown(MSS)
8. else:
9. MUS← Shrink(seed)

10. output MUS
// Block all supersets of MUS

11. map← map ∧BlockUp(MUS)

The following example illustrates the execution of the basic algorithm on our
running example.

Example execution of MARCO (basic)

C = {1 : (a), 2 : (¬a), 3 : (¬a ∨ b), 4 : (¬b)}

The algorithm begins with map = >, and nothing
is known about the infeasibility of the instance.
The map is empty, and so GetUnexplored can
return any subset.

∅

1 2 3 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

In this example, GetUnexplored returns an initial seed of {1, 2, 4}, the seed is
found to be UNSAT, and an MUS is produced:

Fast, Flexible MUS Enumeration 17

– GetUnexplored(map)→ {1, 2, 4}
– SAT({1, 2, 4})→ False (UNSAT)
– Shrink({1, 2, 4})→ {1, 2}
{1, 2} is output as an MUS.

– map← map ∧BlockUp({1, 2})
The map is updated as shown to the right.

∅

1 2 3 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

The next seed is SAT, producing an MSS:

– GetUnexplored(map)→ {3}
– SAT({3})→ True
– Grow({3})→ {1, 3}
– map← map ∧BlockDown({1, 3})

∅

1 2 3 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

And so on...

– GetUnexplored(map)→ {2}
– SAT({2})→ True
– Grow({2})→ {2, 3, 4}
– map← map ∧BlockDown({2, 3, 4})

∅

1 2 3 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

– GetUnexplored(map)→ {1, 4}
– SAT({1, 4})→ True
– Grow({1, 4})→ {1, 4}
– map← map ∧BlockDown({1, 4})

∅

1 2 3 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

– GetUnexplored(map)→ {1, 3, 4}
– SAT({1, 3, 4})→ False
– Shrink({1, 3, 4})→ {1, 3, 4}
– map← map ∧BlockUp({1, 3, 4})

∅

1 2 3 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

At this point, every subset in the lattice is explored, map is unsatisfiable, and the
while loop terminates, ending the algorithm.

The correctness of the MARCO algorithm, that it produces only MUSes and
MSSes, follows directly from that of the Shrink and Grow subroutines used.
MARCO does not prescribe any particular implementation for these two subrou-
tines, it merely requires that they be correct.

Theorem 2 (Correctness). Every output of Algorithm 1 is either an MUS or an MSS.

18 Liffiton, Previti, Malik, and Marques-Silva

Proof. The only MUS (MSS) outputs of MARCO are outputs of the Shrink (Grow)
subroutine. If Shrink and Grow are correct, they can only output MUSes and
MSSes, respectively.

The completeness of the algorithm can be understood intuitively by seeing that
MARCO never repeats an output, due to the blocking in map, and it never misses
an output. Therefore, every iteration of the algorithm produces a new MUS or
MSS, and all will eventually be found. More formally:

Lemma 3 (No duplicates). If Algorithm 1 outputs a given MUS or MSS once, that

MUS or MSS will never be output again.

Proof. If Algorithm 1 outputs an MUS (MSS) M , then models corresponding to
M and all of its supersets (subsets) are blocked in map by the clause obtained
from BlockUp (BlockDown). Therefore, by Lemma 1 in Section 3.3, later calls
to GetUnexplored(map) will never return M nor any of its supersets (subsets). For
Shrink (Grow) to output M , it must be given some input constraint set that is a
superset (subset) of M . Therefore, following the first output of M , no subsequent
iteration of the while loop in Algorithm 1 can produce M again.

Theorem 3 (Completeness). Algorithm 1 outputs all MUSes and MSSes of an infea-

sible constraint system C.

Proof. In each iteration of its while loop, Algorithm 1 outputs a “new” MUS or
MSS that has not been output previously (by Lemma 3). As long as some MUS or
MSS remains to be found, map will be satisfiable, because the model corresponding
to that MUS or MSS will not yet be blocked (by the contrapositive of Lemma 2 in
Section 3.3). Therefore, the while loop will repeat as long as there is any MUS or
MSS not yet output, and because each iteration outputs a new result, every MUS
and MSS will be output in some iteration of the loop.

Theorem 4 (Termination). Algorithm 1 will terminate.

Proof. Every MUS and MSS of C will be output (by Theorem 3). If every MUS
and MSS has been output, then every superset of an MUS and every subset of an
MSS has been blocked in map by either line 7 or line 11. Every subset of C is either
unsatisfiable, hence a superset of an MUS, or satisfiable, hence a subset of an
MSS. Therefore, if every MUS and MSS has been output, then every subset of C

is explored, every model is blocked in map, and the while loop will terminate.

5.2 Analyzing Performance

Analyzing this basic version of the algorithm can inform and support the opti-
mizations described in Section 5.3. First, we can show that MARCO can return the
first MUS as quickly as the best known single-MUS extraction algorithm at any
point in time, and in so doing we identify potential optimizations for the algorithm
as a whole. If Algorithm 1’s first seed is C itself, then the algorithm will immedi-
ately call Shrink(C) and produce its first MUS. Because Shrink can be any MUS
extraction algorithm, the algorithm can use the best known implementation for

Fast, Flexible MUS Enumeration 19

any given type of constraint. As a corollary, no enumeration algorithm can return
its first MUS faster than MARCO.

For each successive MUS to be output with a similar delay requires that each
successive seed be UNSAT, so that each will be passed to the same Shrink sub-
routine to produce a new MUS. This cannot be guaranteed, but the algorithm can
be biased to favor UNSAT seeds early in its execution. Furthermore, successive
MUSes may be output with an even shorter delay than the first. Each later call to
Shrink will necessarily be operating on some proper subset of C, hence a smaller
instance, and information in addition to the constraints themselves may be given
to the subroutine to boost its performance in later calls. Optimizations discussed
in Section 5.3 address both the biasing toward UNSAT seeds and the boosting of
Shrink with extra information.

The overall runtime of Algorithm 1 depends primarily on the performance of
the Shrink and Grow subroutines; the other steps operate on the simple clause
set map and take negligible time, while Shrink and Grow operate on subsets of C
itself. Empirically, in our experiments on Algorithm 1, Grow and Shrink combined
take over 80% of the runtime on average. Both of these subroutines can be black-
box oracles as far as MARCO is concerned, and so their implementations can be
optimized independently.

5.3 Optimized MARCO

Due to the preceding analyses, our optimizations work towards three different
goals:

1. Bias the algorithm to favor UNSAT seeds over SAT seeds early in the execution
2. Eliminate some or all of the calls to Shrink or Grow

3. Boost the performance of individual calls to Shrink

Maximal Models The first two goals were addressed in both [21] and [28] similar
fashions: generate seeds by computing large or maximal models of map. A maximal
model of map is one in which no False assignment can be made True without
violating a clause; therefore, a maximal model will represent a subset of C for which
all supersets have been explored. It is not guaranteed to produce an unsatisfiable
subset of C, but the larger a subset is, the more likely it is to be unsatisfiable. For
example, if the MUS {1, 2} has been found in our running example and the map
is as shown in Figure 4, the maximal models of map will correspond to constraint
sets {1, 3, 4} and {2, 3, 4}; the former is unsatisfiable, and the latter is satisfiable.

Furthermore, Previti and Marques-Silva proved (in Lemma 2 of their paper
[28]) that if Algorithm 1 uses a maximal model for every seed, then any such seeds
found to be satisfiable will necessarily be MSSes and Grow is unnecessary. This
means that using maximal models to compute seeds will both bias the algorithm
toward finding MUSes early and remove the need to ever call Grow, potentially
resulting in greater efficiency. This optimization is shown in Algorithm 2, in which
the GetUnexploredMax function is a modification of GetUnexplored that finds
and uses maximal models. As using maximal models merely adds a restriction
to the GetUnexplored function, this optimization does not affect any of the
theorems in Section 5.1, and those results hold for Algorithm 2 as well.

20 Liffiton, Previti, Malik, and Marques-Silva

∅

1 2 3 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

Fig. 4 An example intermediate map state
with two maximal models: {1, 3, 4} and
{2, 3, 4}.

Algorithm 2 An optimized version of MARCO using maximal models
input: Unsatisfiable constraint set C
output: MUSes and MSSes of C

1. map ← BoolFormula(nvars = |C|)
2. while map is satisfiable:
3. seed← GetUnexploredMax(map)
4. if SAT(seed):

// seed is an MSS
5. output seed
6. map← map ∧BlockDown(seed)
7. else:
8. MUS← Shrink(seed)
9. output MUS

10. map← map ∧BlockUp(MUS)

Liffiton and Malik’s implementation did not guarantee finding maximal mod-
els, but rather it implemented a heuristic “bias” toward larger models using an
unmodified MiniSat solver [21]. Their implementation assigned default polarities to
every variable in map so that the initial assignment for any newly-assigned variable
would be True (aiming to include as many constraints in the corresponding sub-
set as possible). Previti and Marques-Silva’s implementation eMUS, on the other
hand, computes maximal models using SAT&PREF, a MiniSat-based solver for sat-
isfiability problems with qualitative preferences [8]. To compute a maximal model,
every variable is given a preference of being assigned True, with all preferences
given equal weight.

The implementation of MARCO studied empirically in Section 6 guarantees
maximal models with an approach similar to that in Liffiton and Malik’s im-
plementation: using a more recent version of MiniSat4, every variable in map is
assigned a user polarity of True, which overrides any other heuristics for choosing
a variable’s polarity at a decision point during solving. This guarantees maximality
because it matches the behavior of the SAT&PREF algorithm when given an empty
ordering over preferences (equal weights) as we have when computing a maximal
model.

Note that this optimization has a dual: if every seed is a minimal model, then
any unsatisfiable seed found is guaranteed to be an MUS, and all calls to Shrink

can be removed. This is attractive, due to the high cost of the Shrink subroutine,
but it is balanced by the fact that it will bias the algorithm toward satisfiable
subsets (hence, MSSes) and away from MUSes early in its execution.

4 Specifically, commit cd3a2d653f on GitHub.

https://github.com/niklasso/minisat/tree/cd3a2d653fc073585ef05e2ebb72ab015d851279

Fast, Flexible MUS Enumeration 21

Boosting Shrink If MARCO is to include calls to Shrink, a single-MUS extraction
algorithm, then another route of optimization is to boost that algorithm by pro-
viding it more information than just the constraints in seed. During its execution,
MARCO gathers information about C that may be useful. For example, certain
constraints in C may be found to be necessary (following Kullmann, et al.’s ter-
minology [20]), included in every MUS, and these can be given to Shrink as hard
constraints, reducing its search space.

Specifically, any constraint found to be a singleton MCS (i.e., with cardinality
one) is a necessary constraint and can be used in this way. Note that a singleton
MCS will result in a single-literal BlockDown clause (it is the one constraint
not included in its complementary MSS). More generally, then, any literal that is
implied True by the map formula corresponds to a constraint that is included in
every MUS of C. These implications can be easily extracted from the map solver
and passed to Shrink as hard constraints during the course of MARCO’s execution.
As with using maximal models, this optimization does not affect any of the proofs
in Section 5.1.

Note that this has a dual as well: any literal implied to be False by the map

formula corresponds to a constraint that is included in every MCS (i.e., that is
excluded from every MSS). However, this indicates a constraint that induces a
conflict by itself — impossible in Boolean CNF and unlikely in other constraint
systems. Therefore, we do not explore it further, but it is an illustration of the
highly dual nature of the MARCO algorithm and underlying concepts.

5.4 Comparison to Other Algorithms

In comparison to direct subset enumeration algorithms, MARCO has far fewer SAT

checks, as large regions of the search space are eliminated by the blocking clauses
added after every output. MARCO also compares favorably at an algorithmic level
to the algorithms based on hitting set dualization, which have already been shown
to outperform the subset enumeration approach. First, it entirely avoids the po-
tential intractability of the first phase of CAMUS. While CAMUS is sensitive to the
number of MSSes/MCSes in an instance due to its first phase, MARCO outputs
MUSes “early” without having to compute all or even any given fraction of the
MSSes. Likewise, MARCO avoids the memory scaling problem of DAA, which can
compute an exponentially large number of hitting sets in each iteration.

However, minimal or maximal models of map correspond to minimal hitting
sets of the MUSes or MCSes, respectively, found thus far [19], which draws a clear
connection between MARCO and both DAA and PDDS. If implemented to find
minimal models of map, MARCO is similar to DAA and the primary presentation
of PDDS; with maximal models as in the MUS-optimized version, MARCO is like
the alternative version of PDDS. The primary differences, then, arise from: 1)
MARCO’s unified representation of discovered MUSes and MSSes, maintaining map

as a Boolean formula, and 2) MARCO’s implicit hitting set computation via a SAT
solver that can provide maximal models.

First, MARCO computes a single hitting set at a time (as in PDDS), avoiding
the scaling issue faced by DAA. Secondly, previously-seen sets will be automatically
avoided due to the blocking clauses in map for both MUSes and MSSes; DAA and
PDDS need to augment the hitting set computation or implement a secondary check

22 Liffiton, Previti, Malik, and Marques-Silva

to detect and skip sets that have been explored previously. Third, the use of maxi-
mal models both biases MARCO toward MUSes early in its execution and provides
MSSes for “free.” And finally, the map formula enables constraint-based reasoning
such as the use of implications from map to boost Shrink, above, flexibility in the
implementation of getUnexplored, and the potential for further improvements
along those lines as well. Therefore, MARCO with minimal models explores the
power set in the same fashion as DAA and the primary version of PDDS, while
MUS-optimized MARCO matches the ordering of the alternate PDDS direction,
but its internal constraint-based reasoning provides advantages over both.

The DAA and PDDS algorithms have the benefit that they are decoupled from
the choice of hitting set (hypergraph transversal) algorithm. As noted by Gunop-
ulos, et al., the choice of the Fredman Khachiyan algorithm for computing hitting
sets results in a version of the DAA algorithm with worst case runtime that is
subexponential in the size of the output [15]. MARCO, on the other hand, relies
on a SAT solver for generating new seeds, as it uses additional information and
solves a problem more complex than a pure hypergraph transversal problem. This
gains MARCO the benefits outlined above but at the cost of a worse complexity
bound, given that each new seed and thus each output arises from a search with
worst-case exponential runtime.

6 Results

We experimentally compared variants of the MARCO algorithm with each other
and with the best known existing MUS enumeration algorithms. Earlier work has
shown that CAMUS typically outperforms DAA for complete MUS enumeration [23],
and DAA outperforms the subset enumeration approaches [2]. The incremental na-
ture of DAA makes it more suitable to the problem of interest here, namely finding
some MUSes quickly, and so it warrants further attention in this context alongside
CAMUS. To match the focus of this work on enumerating some MUSes even when
complete enumeration is intractable, we also include the variant of CAMUS that
produces PCSes for better scalability, specifically with MCSes truncated to two
clauses each: “CAMUS (2PCSes)”. Finally, we have included three variants of the
MARCO algorithm based on a new implementation:

1. MARCO+ – the optimized version of the MARCO algorithm5.
2. MARCO (basic) – the basic variant of the algorithm (Algorithm 1).
3. MARCO (MSS bias) – a variant biased toward finding MSSes (using minimal

models instead of maximal) – both to show the value of maximal models and
as a stand-in for an optimized version of DAA without the scaling issues caused
by enumerating all minimal hitting sets after each output.

Every algorithm was run on a collection of 300 unsatisfiable Boolean CNF
benchmarks that were selected for the MUS track of the 2011 SAT competition
(available: http://www.cril.univ-artois.fr/SAT11/). The instances were drawn
from a variety of domains and applications, and they range in size from 26 to 4.4
million variables and from 70 to 16.0 million constraints. All experiments were run
on Amazon Elastic Compute Cloud (EC2) “cc2.8xlarge” instances with Intel Xeon

5 We will refer to this version as MARCO+ to differentiate it from the implementation tested
in [21].

http://www.cril.univ-artois.fr/SAT11/

Fast, Flexible MUS Enumeration 23

Fig. 5 Cactus plot of the total run-
time to complete MSS/MUS enu-
meration for each algorithm.

E5-2670 processors and 60.5GiB of RAM. Every execution ran with a limit of 3600
seconds (1 hour) and 3000MB of RAM. We used the following implementations of
the algorithms tested:

– MARCO v1.0 (available: http://www.iwu.edu/~mliffito/marco/) – a Python
implementation using MUSer2 [3] for the Shrink subroutine and MiniSat [9]
(commit cd3a2d653f on GitHub) for Grow and GetUnexplored[Max].

– CAMUS v1.05 (available: http://www.iwu.edu/~mliffito/camus/) – written in
C++ using MiniSat v1.12.

– DAA – a custom implementation of DAA for Boolean CNF written in C++ using
MiniSat v2.2.

While Python is generally slower than C++, the MARCO implementation spends
the great majority of its runtime in MUSer2 and MiniSat, which are compiled
C++. Therefore, the use of Python for the high-level algorithm employing those
solvers has a negligible impact on the overall runtime. As noted earlier, DAA can
be implemented with any hitting set algorithm; our implementation here uses
the algorithm developed as part of CAMUS, which performed well compared to
existing implementations of other algorithms in [23]. There are no other known
implementations of DAA for Boolean CNF, and while using the Fredman Khachiyan
hitting set algorithm would result in a better runtime bound, the (MSS bias) variant
of MARCO stands in for an optimized version of DAA, providing a comparison of
DAA’s bias towards satisfiable seeds with the bias used in the optimized version of
MARCO.

Complete MUS enumeration is generally an intractable problem, due to the
potentially exponential number of MUSes, and no algorithm was able to complete
within the timeout for more than 30 of the 300 instances. The runtimes for MARCO

(both the optimized version and the basic version), CAMUS, and DAA are compared
in a logarithmic cactus plot6 in Figure 5. CAMUS is the fastest overall algorithm

6 Cactus plots are created by sorting and plotting values in order within each series, showing
distributions of values within a series, but not allowing pairwise comparisons between them.
Each point (x, y) can be read as, “x instances have a value [e.g., runtime] of y or less.”

http://www.iwu.edu/~mliffito/marco/
https://github.com/niklasso/minisat/tree/cd3a2d653fc073585ef05e2ebb72ab015d851279
http://www.iwu.edu/~mliffito/camus/

24 Liffiton, Previti, Malik, and Marques-Silva

Fig. 6: Reverse cactus plot of the number of MUSes output within the time and
memory limits by each algorithm.

in the majority of the instances, but MARCO+ is close or better in many. Note
that there is not a substantial difference here between the three variants of the
MARCO algorithm, though the MARCO+ variant biased toward MUSes does have
a slight edge overall. For complete enumeration, CAMUS may be a more efficient
approach than MARCO+, but of course the aim of this work is to produce some
MUSes quickly in the large number of instances for which CAMUS produces none.

Therefore, these algorithms are best analyzed in terms of how many results
they produce and when they produce them, as opposed to simply measuring run-
time to completion, which will most often be impossibly long. Figure 6 contains a
reverse cactus plot7 of the numbers of MUSes produced by each algorithm within
the 3600 second time- and 3000 MB memory-limit. We can see that MARCO+ far
outperforms the previous approaches. It finds two or more MUSes within the
resource limits in 235 of the 300 benchmarks, while the next closest, CAMUS

using 2-constraint PCSes, finds multiple MUSes in only 58 instances. Likewise,
MARCO+ finds over 100 MUSes in 137 instances, compared to 28 instances for
CAMUS (2PCSes). For an idea of how quickly MARCO+ outputs MUSes, Figure 7
shows similar plots of the number of MUSes found within three shorter time limits:
600, 60, and 10 seconds. In each of these cases, MARCO+ still finds multiple MUSes
in far more instances than the existing algorithms, and it finds more MUSes within
the time limit for all but a few benchmarks.

In the full 3600 second experiment, there are roughly 20 instances in which
CAMUS (either variant) outputs more MUSes than MARCO+ within the resource
limits; in these cases, CAMUS can find the complete set of MCSes or PCSes rel-
atively quickly, and its efficient hitting set algorithm can then enumerate MUSes
much more rapidly than MARCO+’s call to Shrink for each. In some of these cases,
CAMUS outputs millions of MUSes before MARCO+ even completes its first call

7 In this plot, a point (x, y) can be read as, “x instances have a value of y or more.”

Fast, Flexible MUS Enumeration 25

600 second time limit:

60 second time limit:

10 second time limit:

Fig. 7: Reverse cactus plots of MUSes output within three shorter time limits (600,
60, and 10 seconds, top to bottom).

26 Liffiton, Previti, Malik, and Marques-Silva

(a) MARCO+ (b) MARCO (MSS bias)

(c) DAA (d) CAMUS (2PCSes)

Fig. 8: Anytime plots showing the percent of MUSes found at any time during
each run, normalized to compare rates and trajectories across instances.

to Shrink to output a single MUS. Thus, while MARCO+ does not outperform
existing algorithms in every case, it does so in a large majority of instances.

Comparing the variants of the MARCO algorithm, we see that the optimized
version, biased toward finding MUSes early, greatly outperforms both the basic
version and the variant biased toward finding MSSes early, as expected. Inter-
estingly, the MSS-biased variant outperforms the basic algorithm at enumerating
MUSes. This suggests that the cost to that variant of hitting more satisfiable
subsets early on is outweighed by the benefit of removing all calls to the Shrink

subroutine. In about 30 instances, the MSS-biased variant outputs more MUSes
than the MUS-biased version, indicating that in these instances, eliminating the
calls to Shrink is more beneficial than eliminating Grow, even with the additional
cost of hitting satisfiable subsets early. As noted earlier, the bulk of MARCO+’s
runtime is spent in one or both of these two subroutines, and it is worth exploring
their performance further.

For a more precise view of when during its execution each algorithm outputs
MUSes, Figure 8 contains anytime plots for MARCO in its optimized configuration

Fast, Flexible MUS Enumeration 27

and with the MSS bias, for DAA, and for CAMUS using 2PCSes. Each line traces
the cumulative percentage of MUSes output over time during an algorithm’s run
on each benchmark, with the time normalized such that the total runtime of an
instance (usually the 3600 second timeout) is scaled to 1.0. A line directly along the
diagonal would thus represent an instance for which an algorithm produced MUSes
steadily throughout its execution, with equal delay between each. Lines curving
above the diagonal indicate instances for which MUSes were output “early” in an
algorithm’s execution, while lines below represent instances with MUSes produced
more often later in the execution. Each of these plots contains traces for any
benchmark for which the given algorithm produced 10 or more MUSes.

The anytime plots illustrate several important characteristics of the algorithms.
Figure 6 has already shown that the optimized version MARCO+ typically produces
more MUSes within a given timeout than the MSS-biased version, and the anytime
plots further indicate that the optimized version most frequently has a steady rate
of MUS output, while the MSS-biased variant often has a longer delay before
any MUSes are produced and generally outputs them later. DAA has fewer traces
due to producing multiple MUSes in fewer instances, but in the traces we have, it
exhibits an overall trend of producing MUSes later in its execution, with the curves
typically under the diagonal. Finally, the anytime plot for CAMUS reflects its two-
phase nature. Instances exhibit a delay, often long, while the first phase executes,
followed by a fairly even rate of MUS output once the second phase begins. Overall,
these plots show that MARCO+ is best for enumerating some MUSes quickly, given
its short delay to the first output, generally steady output of MUSes from the
beginning, and frequent front-loading of MUS outputs (with more curves above
the diagonal than below).

7 Conclusions & Future Work

We have presented the MARCO / eMUS algorithm for enumerating MUSes of an
infeasible constraint system, unifying and expanding upon the earlier independent
work in which it was first presented [21,28]. Through the lens of power set ex-
ploration, we have more fully described the algorithm’s operation, including some
new optimizations, and we drew stronger comparisons back to earlier work in the
field. We demonstrated several positive properties of the MARCO algorithm:

– It is constraint agnostic, meaning it can easily be implemented for any type of
constraint.

– It has good anytime performance, producing outputs quickly and early in its
execution, especially compared to previous MUS enumeration algorithms.

– It can immediately benefit from any future advances in single-MUS extraction
algorithms, as it can use any such algorithm as a black box oracle for one of
its more expensive operations.

Experiments showed that MARCO outperforms existing algorithms for the task
of partial MUS enumeration, especially when complete enumeration is impossible
within reasonable time limits, though it is not necessarily an improvement in the
state-of-the-art for complete enumeration.

The structure of the basic MARCO variant (Algorithm 1) provides a great deal
of flexibility in its implementation. We have presented an optimized version (Al-
gorithm 2) well-suited to enumerating MUSes, but there is potential for further

28 Liffiton, Previti, Malik, and Marques-Silva

improvements. For example, the use of implications from the map formula to boost
Shrink is one step into sharing information between the solvers for the map abstrac-
tion and the original constraints C, and additional improvements may be found in
that direction. The GetUnexplored function also allows for a wide range of im-
plementations, and it is worth exploring methods beyond the maximal, minimal,
and random models tried here; for example, the alternation between minimal and
maximal models implicitly used in Stern, et al.’s SDE [30] provides one alternative.
Additionally, while a large body of work on single-MUS extraction algorithms has
provided efficient implementations for Shrink, the problem of finding a single MSS
(Grow) is much less studied. The Grow subroutine is unneeded when using max-
imal models as in Algorithm 2, but alternative approaches for GetUnexplored

could benefit from improved algorithms for finding a single MSS such as the recent
work in [25].

In some settings there is interest in computing preferred MUSes and MCSes [18].
Computation of lexicographic preferred MUSes and MCSes is hard for the 2nd
level of the polynomial hierarchy [26], and so it is often impractical in practice.
In contrast, the partial enumeration of anti-lexicographic MUSes and MCSes is
computationally easier [26]. The MARCO / eMUS algorithm can compute max-
imal models that will represent anti-lexicographically preferred MCSes/MUSes.
For this, the map solver needs to be able to compute an anti-lexicographically
preferred MCS [26], and the MUS extractor must be able to compute an anti-
lexicographically preferred MUS.

And finally, the general approach of exploring a constraint system’s power set
by “mapping” regions as an algorithm progresses may benefit infeasibility analysis
problems beyond MUS enumeration and those described in Section 3.5. While it is
implicit in many existing algorithms, directly reasoning in this way and visualizing
the power set lattice may illuminate further advances in the field.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments
and suggestions for improving this article. This work is partially supported by
an Amazon AWS in Education Research Grant award, by SFI PI grant BEA-
CON (09/IN.1/I2618), and by FCT grants ATTEST (CMU-PT/ELE/0009/2009),
POLARIS (PTDC/EIA-CCO/123051/2010), and by national funds through FCT
with reference UID/CEC/50021/2013.

References

1. Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. Reveal: A formal verification tool
for Verilog designs. In Proc. 15th International Conference on Logic for Programming
Artificial Intelligence and Reasoning (LPAR-2008), pages 343–352, Nov. 2008.

2. J. Bailey and P. J. Stuckey. Discovery of minimal unsatisfiable subsets of constraints using
hitting set dualization. In Proceedings of the 7th International Symposium on Practical
Aspects of Declarative Languages (PADL’05), volume 3350 of LNCS, pages 174–186, 2005.

3. A. Belov and J. Marques-Silva. MUSer2: An efficient MUS extractor. Journal on Satisfi-
ability, Boolean Modeling and Computation, 8:123–128, 2012.

4. C. Berge. Hypergraphs, volume 45 of North-Holland Mathematical Library. North-Holland
Publishing Co., Amsterdam, 1989.

Fast, Flexible MUS Enumeration 29

5. A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. A modular approach to
MaxSAT modulo theories. In Proceedings of the 16th International Conference on Theory
and Applications of Satisfiability Testing (SAT-2013), pages 150–165, 2013.

6. J. Davies and F. Bacchus. Solving MAXSAT by solving a sequence of simpler SAT in-
stances. In Principles and Practice of Constraint Programming (CP 2011), pages 225–239.
Springer, 2011.

7. J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial Intelligence,
32(1):97–130, 1987.

8. E. Di Rosa and E. Giunchiglia. Combining approaches for solving satisfiability problems
with qualitative preferences. AI Communications, 26(4):395–408, 2013.

9. N. Eén and N. Sörensson. An extensible SAT-solver. In Proceedings of the 6th International
Conference on Theory and Applications of Satisfiability Testing (SAT-2003), volume 2919
of LNCS, pages 502–518, 2003.

10. M. L. Fredman and L. Khachiyan. On the complexity of dualization of monotone disjunc-
tive normal forms. Journal of Algorithms, 21(3):618–628, 1996.

11. M. J. Garćıa de la Banda, P. J. Stuckey, and J. Wazny. Finding all minimal unsatisfiable
subsets. In Proceedings of the 5th ACM SIGPLAN international conference on Principles
and practice of declaritive programming (PPDP’03), pages 32–43, 2003.

12. R. M. Gasca, C. D. Valle, M. T. G. López, and R. Ceballos. NMUS: Structural analysis
for improving the derivation of all MUSes in overconstrained numeric CSPs. In Current
Topics in Artificial Intelligence, 12th Conference of the Spanish Association for Artificial
Intelligence (CAEPIA 2007), volume 4788 of LNCS, pages 160–169, 2007.

13. J. Gleeson and J. Ryan. Identifying minimally infeasible subsytems. ORSA Journal on
Computing, 2(1):61–67, 1990.

14. É. Grégoire, B. Mazure, and C. Piette. Boosting a complete technique to find MSSes and
MUSes thanks to a local search oracle. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI’07), volume 2, pages 2300–2305, Jan. 2007.

15. D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. S. Sharma. Dis-
covering all most specific sentences. ACM Transactions on Database Systems (TODS),
28(2):140–174, 2003.

16. B. Han and S.-J. Lee. Deriving minimal conflict sets by CS-trees with mark set in diagnosis
from first principles. IEEE Transactions on Systems, Man, and Cybernetics, Part B,
29(2):281–286, Apr. 1999.

17. A. Hou. A theory of measurement in diagnosis from first principles. Artificial Intelligence,
65(2):281–328, 1994.

18. U. Junker. QuickXplain: Preferred explanations and relaxations for over-constrained prob-
lems. In Proceedings of the 19th AAAI Conference on Artificial Intelligence (AAAI 2004),
pages 167–172, 2004.

19. D. J. Kavvadias, M. Sideri, and E. C. Stavropoulos. Generating all maximal models of a
Boolean expression. Information Processing Letters, 74(3):157–162, 2000.

20. O. Kullmann, I. Lynce, and J. Marques-Silva. Categorisation of clauses in conjunctive
normal forms: Minimally unsatisfiable sub-clause-sets and the lean kernel. In Proceedings
of the 9th International Conference on Theory and Applications of Satisfiability Testing
(SAT-2006), volume 4121 of LNCS, pages 22–35, 2006.

21. M. H. Liffiton and A. Malik. Enumerating infeasibility: Finding multiple MUSes quickly. In
Proceedings of the 10th International Conference on Integration of AI and OR Techniques
in Constraint Programming (CPAIOR 2013), pages 160–175, May 2013.

22. M. H. Liffiton and K. A. Sakallah. On finding all minimally unsatisfiable subformulas. In
Proceedings of the 8th International Conference on Theory and Applications of Satisfia-
bility Testing (SAT-2005), volume 3569 of LNCS, pages 173–186, 2005.

23. M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable subsets
of constraints. Journal of Automated Reasoning, 40(1):1–33, Jan. 2008.

24. M. H. Liffiton and K. A. Sakallah. Generalizing core-guided Max-SAT. In Proceedings
of the 12th International Conference on Theory and Applications of Satisfiability Testing
(SAT-2009), volume 5584 of LNCS, pages 481–494, 2009.

25. J. Marques-Silva, F. Heras, M. Janota, A. Previti, and A. Belov. On computing minimal
correction subsets. In Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI-2013), pages 615–622. AAAI Press, 2013.

26. J. Marques-Silva and A. Previti. On computing preferred MUSes and MCSes. In Pro-
ceedings of the 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT-2014), pages 58–74. Springer, 2014.

30 Liffiton, Previti, Malik, and Marques-Silva

27. A. Morgado, F. Heras, M. Liffiton, J. Planes, and J. Marques-Silva. Iterative and core-
guided MaxSAT solving: A survey and assessment. Constraints, 18(4):478–534, Oct. 2013.

28. A. Previti and J. Marques-Silva. Partial MUS enumeration. In Proceedings of the 27th

AAAI Conference on Artificial Intelligence (AAAI-2013), pages 818–825, July 2013.
29. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95,

1987.
30. R. T. Stern, M. Kalech, A. Feldman, and G. M. Provan. Exploring the duality in conflict-

directed model-based diagnosis. In Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAAI-2012), 2012.

31. J. van Loon. Irreducibly inconsistent systems of linear inequalities. European Journal of
Operational Research, 8(3):283–288, Nov. 1981.

